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ABSTRACT: In the present paper, authors determine the primitive of system of convolution type linear 

Volterra integro-differential equations of first kind by using Laplace-Carson transform. Four numerical 

problems have been considered and solved using Laplace-Carson transform for explaining the applicability of 

Laplace-Carson transform for determining the primitive of system of convolution type linear Volterra integro-

differential equations of first kind. Results of numerical problems depict that the Laplace-Carson transform 

provides the primitive of system of convolution type linear Volterra integro-differential equations of first kind 

without doing tedious calculation work. 

KEYWORDS: Volterra Integro-Differential Equation; Laplace-Carson Transform; Convolution; Inverse 

Laplace-Carson Transform 

MATHEMATICS SUBJECT CLASSIFICATION: 44A10, 45J05, 45A05, 45D05. 

INTRODUCTION: In the present scenario, integral transforms can be used for solving many interesting 

problems of engineering, mechanics, statistics, physics, elasticity, potential theory, plasticity, fluid dynamics, 

population dynamics, and aero dynamics by developing their mathematical model using ordinary differential 

equations, partial differential equations, integral equations, delay differential equations, integro-differential 

equations and their systems. System of Volterra integro-differential equations appears when we convert higher 

order initial value problem into integral equation. Aggarwal and other scholars [1-8] used different integral 

transformations (Mahgoub, Aboodh, Shehu, Elzaki, Mohand, Kamal) and determined the analytical solutions 

of first and second kind Volterra integral equations. Solutions of the problems of Volterra integro-differential 

equations of second kind are given by Aggarwal et al. [9-11] with the help of Mahgoub, Kamal and Aboodh 

transformations. In the year 2018, Aggarwal with other scholars [12-13] determined the solutions of linear 

partial integro-differential equations using Mahgoub and Kamal transformations.  

Aggarwal et al. [14-20] used Sawi; Mohand; Kamal; Shehu; Elzaki; Laplace and Mahgoub 

transformations and determined the solutions of advance problems of population growth and decay by the help 

of their mathematical models. Aggarwal et al. [21-26] defined dualities relations of many advance integral 
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transformations. Comparative studies of Mohand and other integral transformations are given by Aggarwal et 

al. [27-31]. Aggarwal et al. [32-39] defined Elzaki; Aboodh; Shehu; Sumudu; Mohand; Kamal; Mahgoub and 

Laplace transformations of error function with applications.  

The solutions of ordinary differential equations with variable coefficients are given by Aggarwal et al. 

[40] using Mahgoub transform. Aggarwal et al. [41-45] used different integral transformations and determined 

the solutions of Abel’s integral equations. Aggarwal et al. [46-49] worked on Bessel’s functions and determined 

their Mohand; Aboodh; Mahgoub and Elzaki transformations. Chaudhary et al. [50] gave the connections 

between Aboodh transform and some useful integral transforms. Aggarwal et al. [51] used Kamal transforms 

for solving linear Volterra integral equations of first kind. Solution of population growth and decay problems 

was given by Aggarwal et al. [52-53] by using Aboodh and Sadik transformations respectively.  

Aggarwal and Sharma [54] defined Sadik transform of error function. Application of Sadik transform 

for handling linear Volterra integro-differential equations of second kind was given by Aggarwal et al. [55]. 

Aggarwal and Bhatnagar [56] gave the solution of Abel’s integral equation using Sadik transform. A 

comparative study of Mohand and Mahgoub transforms was given by Aggarwal [57]. Aggarwal [58] defined 

Kamal transform of Bessel’s functions. Chauhan and Aggarwal [59] used Laplace transform and solved 

convolution type linear Volterra integral equation of second kind. Sharma and Aggarwal [60] applied Laplace 

transform and determined the solution of Abel’s integral equation. Laplace transform for the solution of first 

kind linear Volterra integral equation was given by Aggarwal and Sharma [61].  

Mishra et al. [62] defined the relationship between Sumudu and some efficient integral transforms. 

Aggarwal [63] proposed Kamal transform of Bessel’s functions. Aggarwal and other scholars [64-73] used 

Aboodh; Mohand; Kamal; Elzaki; Laplace-carson; Laplace; Sadik; Sawi; Sumudu and Shehu transformations 

for determining the solution of first kind Volterra integro-differential equation. Kumar and Aggarwal [74] 

considered Laplace transform and used it in solving system of linear Volterra integro-ordinary differential 

equations of first kind. Aggarwal et al. [75] determined the solutions of population growth and decay problems 

using Sumudu transform. Aggarwal et al. [76] proposed the Sawi transform of Bessel’s functions with 

application for evaluating definite integrals. Aggarwal et al. [77] determined the primitive of second kind linear 

Volterra integral equation using Shehu transform.  

Higazy et al. [78] used Sawi decomposition method for Volterra integral equation. Higazy et al. [79] 

determined the number of infected cells and concentration of viral particles in plasma during HIV-1 infections 

using Shehu transformation. Watugula [80] gave the Sumudu transform and solved differential equations and 

control engineering problems using it. Abdelilah and Hassan [83] used Kamal transform for solving partial 

differential equations. Kumar et al. [84] applied Mohand transform for solving linear Volterra integral equations 

of first kind. Applications of Mohand transform to mechanics and electrical circuit problems were given by 

Kumar et al. [85].  

Aboodh et al. [86] solved delay differential equations by Aboodh transformation method. Solution of 

partial integro-differential equations by using Aboodh and double Aboodh transforms methods was given by 
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Aboodh et al. [87]. Mohand et al. [88] determined the solution of ordinary differential equation with variable 

coefficients using Aboodh transform. Elzaki and Ezaki [89] used Elzaki transform and determined the solution 

of ordinary differential equation with variable coefficients. Elzaki and Ezaki [90] used Elzaki transform for 

solving partial differential equations. Shendkar and Jadhav [91] applied Elzaki transform on differential 

equations for their solutions. Aggarwal and Kumar [92] used Laplace transform for system of second kind linear 

Volterra integro-differential equations. 

The main aim of this paper is to determine the primitive of system of convolution type linear Volterra 

integro-differential equations of first kind by using Laplace-Carson transform. 

DEFINITION OF LAPLACE-CARSON TRANSFORM: The Laplace-Carson (Mahgoub) transform of the 

function 𝐺(𝑡) for all 𝑡 ≥ 0 is defined as [68]: 

𝐿{𝐺(𝑡)} = 𝑝 ∫ 𝐺(𝑡)𝑒−𝑝𝑡𝑑𝑡
∞

0
= 𝑔(𝑝), where 𝐿  is Laplace-Carson transform operator. Standard properties of 

Laplace-Carson transform and Laplace-Carson transform of useful mathematical functions are presented in 

Table: 1 and Table: 2 respectively (See Table: 1 & Table: 2).  

TABLE: 1 USEFUL PROPERTIES OF LAPLACE-CARSON TRANSFORM [1-2, 57] 

S.N. Name of Property Mathematical Form 

1 Linearity [𝐿{𝑎𝐺1(𝑡) + 𝑏𝐺2(𝑡)} = 𝑎𝐿{𝐺1(𝑡)} + 𝑏𝐿{𝐺2(𝑡)}] 

2 Change of Scale 𝐿{𝐺(𝑎𝑡)} = 𝑔 (
𝑝

𝑎
) 

3 Shifting 
𝐿{𝑒𝑎𝑡𝐺(𝑡)} =

𝑝
(𝑝− 𝑎)

𝑔(𝑝 − 𝑎) 

4 First Derivative [𝐿{𝐺′(𝑡)} = 𝑝𝑔(𝑝) − 𝑝𝐺(0)] 

 

5 Second Derivative [𝐿{𝐺′′(𝑡)} = 𝑝2𝑔(𝑝) − 𝑝2𝐺(0) − 𝑝𝐺 ′(0)] 

 

6 nth Derivative 

[

𝐿{𝐺(𝑛)(𝑡)}

= 𝑝𝑛𝑔(𝑝) − 𝑝𝑛𝐺(0) − 𝑝𝑛−1𝐺 ′(0)

−⋯…− 𝑝𝐺(𝑛−1)(0)

] 

 

7 Convolution 
[𝐿{𝐺1(𝑡) ∗ 𝐺2(𝑡)} =

1
𝑝
𝐿{𝐺1(𝑡)}𝐿{𝐺2(𝑡)}] 
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Table: 2 LAPLACE-CARSON TRANSFORMS OF USEFUL MATHEMATICAL FUNCTIONS [1-2, 

9, 23, 38, 40, 48] 

S.N. 𝐺(𝑡) 𝐿{𝐺(𝑡)} = 𝑔(𝑝) 

1 1 1 

2 𝑡 1

𝑝
, 𝑝 > 0 

3 𝑡2 
(
2

𝑝2
) , 𝑝 > 0 

4 𝑡𝑛, 𝑛𝜖𝑁 
(
𝑛!

𝑝𝑛
) , 𝑝 > 0 

5 𝑡𝑛, 𝑛 > −1 1

𝑝𝑛
Γ(𝑛 + 1), 𝑝 > 0 

6 𝑒𝑎𝑡 𝑝

𝑝 − 𝑎
 , 𝑝 > 𝑎 

7 𝑠𝑖𝑛𝑎𝑡 𝑎𝑝

𝑝2 + 𝑎2
, 𝑝 > 0 

8 𝑐𝑜𝑠𝑎𝑡 𝑝2

𝑝2 + 𝑎2
, 𝑝 > 0 

9 𝑠𝑖𝑛ℎ𝑎𝑡 𝑎𝑝

𝑝2 − 𝑎2
, 𝑝 > |𝑎| 

10 𝑐𝑜𝑠ℎ𝑎𝑡 𝑝2

𝑝2 − 𝑎2
, 𝑝 > |𝑎| 

11 𝐽0(𝑡) 
𝑝

√𝑝2 + 1
 

12 𝐽1(𝑡) 
𝑝 −

𝑝2

√𝑝2 + 1
 

13 𝑒𝑟𝑓(√𝑡) 1

√(1 + 𝑝)
 

 

INVERSE LAPLACE-CARSON TRANSFORM: If 𝐿{𝐺(𝑡)} = 𝑔(𝑝)  then 𝐺(𝑡)  is called the inverse 

Laplace-Carson transform of 𝑔(𝑝).  

Mathematically, it is represented as 𝐺(𝑡) = 𝐿−1{𝑔(𝑝)}, where the operator 𝐿−1 is called the inverse Laplace-

Carson transform operator. Inverse Laplace-Carson transform of useful mathematical functions are presented 

in Table: 3 (See Table: 3). 
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TABLE: 3 INVERSE LAPLACE-CARSON TRANSFORMS OF USEFUL MATHEMATICAL 

FUNCTIONS [57, 68] 

 

S.N. 𝑔(𝑝) 𝐺(𝑡) = 𝐿−1{𝑔(𝑝)} 

1 1 1 

2 1

𝑝
 

𝑡 

3 1

𝑝2
 

𝑡2

2!
 

4 1

𝑝𝑛
, 𝑛𝜖𝑁 

𝑡𝑛

𝑛!
 

5 1

𝑝𝑛
, 𝑛 > −1 

𝑡𝑛

Γ(𝑛 + 1)
 

6 𝑝

𝑝 − 𝑎
 𝑒𝑎𝑡 

7 𝑝

𝑝2 + 𝑎2
 

𝑠𝑖𝑛𝑎𝑡

𝑎
 

8 𝑝2

𝑝2 + 𝑎2
 

𝑐𝑜𝑠𝑎𝑡 

9 𝑝

𝑝2 − 𝑎2
 

𝑠𝑖𝑛ℎ𝑎𝑡

𝑎
 

10 𝑝2

𝑝2 − 𝑎2
 

𝑐𝑜𝑠ℎ𝑎𝑡 

11 𝑝

√𝑝2 + 1
 𝐽0(𝑡) 

12 
𝑝 −

𝑝2

√𝑝2 + 1
 

𝐽1(𝑡) 

13 1

√(1 + 𝑝)
 

𝑒𝑟𝑓(√𝑡) 

 

LAPLACE-CARSON TRANSFORM FOR THE PRIMITIVE OF SYSTEM OF CONVOLUTION 

TYPE LINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS OF FIRST KIND:  

The general system of convolution type linear Volterra integro-differential equations of first kind is given by 

[74] 
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𝑓1(𝑥) = {
∫ 𝐾11(𝑥 − 𝑡)
𝑥

0
𝑢1

(𝑙)(𝑡)𝑑𝑡 + ∫ 𝐾12(𝑥 − 𝑡)
𝑥

0
𝑢2(𝑡)𝑑𝑡

+⋯ .+∫ 𝐾1𝑛(𝑥 − 𝑡)
𝑥

0
𝑢𝑛(𝑡)𝑑𝑡

}

𝑓2(𝑥) = {
∫ 𝐾21(𝑥 − 𝑡)
𝑥

0
𝑢1(𝑡)𝑑𝑡 + ∫ 𝐾22(𝑥 − 𝑡)

𝑥

0
𝑢2

(𝑙)(𝑡)𝑑𝑡

+⋯ .+∫ 𝐾2𝑛(𝑥 − 𝑡)
𝑥

0
𝑢𝑛(𝑡)𝑑𝑡

}

……………………………………………………………………………

𝑓𝑛(𝑥) = {
∫ 𝐾𝑛1(𝑥 − 𝑡)
𝑥

0
𝑢1(𝑡)𝑑𝑡 + ∫ 𝐾𝑛2(𝑥 − 𝑡)

𝑥

0
𝑢2(𝑡)𝑑𝑡

+⋯ .+∫ 𝐾𝑛𝑛(𝑥 − 𝑡)
𝑥

0
𝑢𝑛

(𝑙)(𝑡)𝑑𝑡
}

]
 
 
 
 
 
 
 
 

    (1) 

with 

{
 
 

 
 𝑢1

(𝑚)(0) = 𝑎1𝑚, 𝑚 = 0,1,2, … , 𝑙 − 1;

𝑢2
(𝑚)(0) = 𝑎2𝑚, 𝑚 = 0,1,2, … , 𝑙 − 1;

………………………………………… ,

𝑢𝑛
(𝑚)(0) = 𝑎𝑛𝑚, 𝑚 = 0,1,2, … , 𝑙 − 1}

 
 

 
 

       (2) 

Operating Laplace-Carson transform on system (1) and using convolution theorem of Laplace-Carson 

transform, we have 

𝐿{𝑓1(𝑥)} =
1

𝑝
[
𝐿{𝐾11(𝑥)}𝐿{𝑢1

(𝑙)(𝑥)} + 𝐿{𝐾12(𝑥)}𝐿{𝑢2(𝑥)}

+⋯ .+𝐿{𝐾1𝑛(𝑥)}𝐿{𝑢𝑛(𝑥)}
]

𝐿{𝑓2(𝑥)} =
1

𝑝
[
𝐿{𝐾21(𝑥)}𝐿{𝑢1(𝑥)} + 𝐿{𝐾22(𝑥)}𝐿{𝑢2

(𝑙)(𝑥)}

+⋯ .+𝐿{𝐾2𝑛(𝑥)}𝐿{𝑢𝑛(𝑥)}
]

……………………………………………………………………………

𝐿{𝑓𝑛(𝑥)} =
1

𝑝
[
𝐿{𝐾𝑛1(𝑥)}𝐿{𝑢1(𝑥)} + 𝐿{𝐾𝑛2(𝑥)}𝐿{𝑢2(𝑥)}

+⋯ .+𝐿{𝐾𝑛𝑛(𝑥)}𝐿{𝑢𝑛
(𝑙)(𝑥)}

]
]
 
 
 
 
 
 
 

     (3) 

Using the property “Laplace-Carson transforms of derivatives” on system (3), we have 
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𝐿{𝑓1(𝑥)} =

[
 
 
 
 
 
 
 
1

𝑝
𝐿{𝐾11(𝑥)}

{
 
 

 
 𝑝𝑙𝐿{𝑢1(𝑥)}

−𝑝𝑙𝑢1(0)

−𝑝𝑙−1𝑢1
′(0)

−⋯ . . −𝑝𝑢1
(𝑙−1)(0)}

 
 

 
 

+
1

𝑝
𝐿{𝐾12(𝑥)}𝐿{𝑢2(𝑥)}

+⋯ .+
1

𝑝
𝐿{𝐾1𝑛(𝑥)}𝐿{𝑢𝑛(𝑥)} ]

 
 
 
 
 
 
 

𝐿{𝑓2(𝑥)} =

[
 
 
 
 
 
 
 

1

𝑝
𝐿{𝐾21(𝑥)}𝐿{𝑢1(𝑥)}

+
1

𝑝
𝐿{𝐾22(𝑥)}

{
 
 

 
 𝑝𝑙𝐿{𝑢2(𝑥)}

−𝑝𝑙𝑢2(0)

−𝑝𝑙−1𝑢2
′(0)

−⋯ . . −𝑝𝑢2
(𝑙−1)(0)}

 
 

 
 

+⋯ .+
1

𝑝
𝐿{𝐾2𝑛(𝑥)}𝐿{𝑢𝑛(𝑥)} ]

 
 
 
 
 
 
 

……………………………………………………………………………

𝐿{𝑓𝑛(𝑥)} =

[
 
 
 
 
 
 
 

1

𝑝
𝐿{𝐾𝑛1(𝑥)}𝐿{𝑢1(𝑥)}

+
1

𝑝
𝐿{𝐾𝑛2(𝑥)}𝐿{𝑢2(𝑥)}

+⋯ .+
1

𝑝
𝐿{𝐾𝑛𝑛(𝑥)}

{
 
 

 
 𝑝𝑙𝐿{𝑢𝑛(𝑥)}

−𝑝𝑙𝑢𝑛(0)

−𝑝𝑙−1𝑢𝑛
′(0)

−⋯ . . −𝑝𝑢𝑛
(𝑙−1)(0)}

 
 

 
 

]
 
 
 
 
 
 
 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    (4) 

Using equation (2) in system (4), we get 

𝐿{𝑓1(𝑥)} =
1

𝑝

[
 
 
 
 
 
 

𝐿{𝐾11(𝑥)}

{
 
 

 
 𝑝𝑙𝐿{𝑢1(𝑥)}

−𝑝𝑙𝑎10
−𝑝𝑙−1𝑎11

−⋯ . . −𝑝𝑎1(𝑙−1)}
 
 

 
 

+𝐿{𝐾12(𝑥)}𝐿{𝑢2(𝑥)}

+⋯ .+𝐿{𝐾1𝑛(𝑥)}𝐿{𝑢𝑛(𝑥)} ]
 
 
 
 
 
 

𝐿{𝑓2(𝑥)} =
1

𝑝

[
 
 
 
 
 
 

𝐿{𝐾21(𝑥)}𝐿{𝑢1(𝑥)}

+𝐿{𝐾22(𝑥)}

{
 
 

 
 𝑝𝑙𝐿{𝑢2(𝑥)}

−𝑝𝑙𝑎20
−𝑝𝑙−1𝑎21

−⋯ . .−𝑝𝑎2(𝑙−1)}
 
 

 
 

+⋯ .+𝐿{𝐾2𝑛(𝑥)}𝐿{𝑢𝑛(𝑥)} ]
 
 
 
 
 
 

……………………………………………………………………………

𝐿{𝑓𝑛(𝑥)} =
1

𝑝

[
 
 
 
 
 
 

𝐿{𝐾𝑛1(𝑥)}𝐿{𝑢1(𝑥)}

+𝐿{𝐾𝑛2(𝑥)}𝐿{𝑢2(𝑥)}

+⋯ .+𝐿{𝐾𝑛𝑛(𝑥)}

{
 
 

 
 𝑝𝑙𝐿{𝑢𝑛(𝑥)}

−𝑝𝑙𝑎𝑛0
−𝑝𝑙−1𝑎𝑛1

−⋯ . .−𝑝𝑎𝑛(𝑙−1)}
 
 

 
 

]
 
 
 
 
 
 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    (5) 
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After simplification system (5), we have 

[

(𝑝𝑙𝐿{𝐾11(𝑥)})𝐿{𝑢1(𝑥)}

+𝐿{𝐾12(𝑥)}𝐿{𝑢2(𝑥)}

+⋯…+ 𝐿{𝐾1𝑛(𝑥)}{𝑢𝑛(𝑥)}

] = [

𝑝𝐿{𝑓1(𝑥)}

+ {
𝑝𝑙𝑎10 + 𝑝

𝑙−1𝑎11
+⋯ .+𝑝𝑎1(𝑙−1)

} 𝐿{𝐾11(𝑥)}
]

[

𝐿{𝐾21(𝑥)}𝐿{𝑢1(𝑥)}

+(𝑝𝑙𝐿{𝐾22(𝑥)})𝐿{𝑢2(𝑥)}

+⋯…+ 𝐿{𝐾2𝑛(𝑥)}𝐿{𝑢𝑛(𝑥)}

] = [

𝑝𝐿{𝑓2(𝑥)}

+ {
𝑝𝑙𝑎20 + 𝑝

𝑙−1𝑎21
+⋯ . . +𝑝𝑎2(𝑙−1)

} 𝐿{𝐾22(𝑥)}
]

… .……………………… .……………………………………………

[

𝐿{𝐾𝑛1(𝑥)}𝐿{𝑢1(𝑥)}

+𝐿{𝐾𝑛2(𝑥)}𝐿{𝑢2(𝑥)}

+⋯…+ (𝑝𝑙𝐿{𝐾𝑛𝑛(𝑥)})𝐿{𝑢𝑛(𝑥)}

] = [

𝑝𝐿{𝑓𝑛(𝑥)}

+ {
𝑝𝑙𝑎𝑛0 + 𝑝

𝑙−1𝑎𝑛1
+⋯ . . +𝑝𝑎𝑛(𝑙−1)

} 𝐿{𝐾𝑛𝑛(𝑥)}
]

]
 
 
 
 
 
 
 
 
 
 

    (6) 

The solution of system (6) is given as 

𝐿{𝑢1(𝑥)} =

|

|

|

|

|

[
 
 
 
 
 

𝑝𝐿{𝑓1(𝑥)}

+

{
 

 
𝑝𝑙𝑎10

+𝑝𝑙−1𝑎11
+⋯ .

+𝑝𝑎1(𝑙−1)}
 

 

𝐿{𝐾11(𝑥)}

]
 
 
 
 
 

𝐿{𝐾12(𝑥)} …… 𝐿{𝐾1𝑛(𝑥)}

[
 
 
 
 
 

𝑝𝐿{𝑓2(𝑥)}

+

{
 

 
𝑝𝑙𝑎20

+𝑝𝑙−1𝑎21
+⋯ . .

+𝑝𝑎2(𝑙−1)}
 

 

𝐿{𝐾22(𝑥)}

]
 
 
 
 
 

(𝑝𝑙𝐿{𝐾22(𝑥)}) … . 𝐿{𝐾2𝑛(𝑥)}

………… .…………………… …………… . . ……… . . …… . .

[
 
 
 
 
 

𝑝𝐿{𝑓𝑛(𝑥)}

+

{
 

 
𝑝𝑙𝑎𝑛0

+𝑝𝑙−1𝑎𝑛1
+⋯ . .

+𝑝𝑎𝑛(𝑙−1)}
 

 

𝐿{𝐾𝑛𝑛(𝑥)}

]
 
 
 
 
 

𝐿{𝐾𝑛2(𝑥)} … . (𝑝𝑙𝐿{𝐾𝑛𝑛(𝑥)})
|

|

|

|

|

|

(𝑝𝑙𝐿{𝐾11(𝑥)}) 𝐿{𝐾12(𝑥)} ……… . . 𝐿{𝐾1𝑛(𝑥)}

𝐿{𝐾21(𝑥)} (𝑝𝑙𝐿{𝐾22(𝑥)}) … . . 𝐿{𝐾2𝑛(𝑥)}
………… …………… . . ……… . . …………… . .

𝐿{𝐾𝑛1(𝑥)} 𝐿{𝐾𝑛2(𝑥)} ……… . . (𝑝𝑙𝐿{𝐾𝑛𝑛(𝑥)})

|
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𝐿{𝑢2(𝑥)} =

|

|

|

|

|
(𝑝𝑙𝐿{𝐾11(𝑥)})

[
 
 
 
 
 

𝑝𝐿{𝑓1(𝑥)}

+

{
 

 
𝑝𝑙𝑎10

+𝑝𝑙−1𝑎11
+⋯ .

+𝑝𝑎1(𝑙−1)}
 

 

𝐿{𝐾11(𝑥)}

]
 
 
 
 
 

… 𝐿{𝐾1𝑛(𝑥)}

𝐿{𝐾21(𝑥)}

[
 
 
 
 
 

𝑝𝐿{𝑓2(𝑥)}

+

{
 

 
𝑝𝑙𝑎20

+𝑝𝑙−1𝑎21
+⋯ . .

+𝑝𝑎2(𝑙−1)}
 

 

𝐿{𝐾22(𝑥)}

]
 
 
 
 
 

… . 𝐿{𝐾2𝑛(𝑥)}

………………… . . ………… …………… . . ……………… . .

𝐿{𝐾𝑛1(𝑥)}

[
 
 
 
 
 

𝑝𝐿{𝑓𝑛(𝑥)}

+

{
 

 
𝑝𝑙𝑎𝑛0

+𝑝𝑙−1𝑎𝑛1
+⋯ . .

+𝑝𝑎𝑛(𝑙−1)}
 

 

𝐿{𝐾𝑛𝑛(𝑥)}

]
 
 
 
 
 

… . (𝑝𝑙𝐿{𝐾𝑛𝑛(𝑥)})
|

|

|

|

|

|

(𝑝𝑙𝐿{𝐾11(𝑥)}) 𝐿{𝐾12(𝑥)} ……… . . 𝐿{𝐾1𝑛(𝑥)}

𝐿{𝐾21(𝑥)} (𝑝𝑙𝐿{𝐾22(𝑥)}) … . . 𝐿{𝐾2𝑛(𝑥)}
………… …………… . . ……… . . …………… . .

𝐿{𝐾𝑛1(𝑥)} 𝐿{𝐾𝑛2(𝑥)} ……… . . (𝑝𝑙𝐿{𝐾𝑛𝑛(𝑥)})

|

 

…………………………………………………………………………………… .. 

𝐿{𝑢𝑛(𝑥)} =

|

|

|

|

|
(𝑝𝑙𝐿{𝐾11(𝑥)}) 𝐿{𝐾12(𝑥)} …

[
 
 
 
 
 

𝑝𝐿{𝑓1(𝑥)}

+

{
 

 
𝑝𝑙𝑎10

+𝑝𝑙−1𝑎11
+⋯ .

+𝑝𝑎1(𝑙−1)}
 

 

𝐿{𝐾11(𝑥)}

]
 
 
 
 
 

𝐿{𝐾21(𝑥)} (𝑝𝑙𝐿{𝐾22(𝑥)}) … .

[
 
 
 
 
 

𝑝𝐿{𝑓2(𝑥)}

+

{
 

 
𝑝𝑙𝑎20

+𝑝𝑙−1𝑎21
+⋯ . .

+𝑝𝑎2(𝑙−1)}
 

 

𝐿{𝐾22(𝑥)}

]
 
 
 
 
 

………………………… …………… . . ……… . . …………… . .

𝐿{𝐾𝑛1(𝑥)} 𝐿{𝐾𝑛2(𝑥)} ……

[
 
 
 
 
 

𝑝𝐿{𝑓𝑛(𝑥)}

+

{
 

 
𝑝𝑙𝑎𝑛0

+𝑝𝑙−1𝑎𝑛1
+⋯ . .

+𝑝𝑎𝑛(𝑙−1)}
 

 

𝐿{𝐾𝑛𝑛(𝑥)}

]
 
 
 
 
 

|

|

|

|

|

|

(𝑝𝑙𝐿{𝐾11(𝑥)}) 𝐿{𝐾12(𝑥)} ……… . . 𝐿{𝐾1𝑛(𝑥)}

𝐿{𝐾21(𝑥)} (𝑝𝑙𝐿{𝐾22(𝑥)}) … . . 𝐿{𝐾2𝑛(𝑥)}
………… …………… . . ……… . . …………… . .

𝐿{𝐾𝑛1(𝑥)} 𝐿{𝐾𝑛2(𝑥)} ……… . . (𝑝𝑙𝐿{𝐾𝑛𝑛(𝑥)})

|

 

After simplification of above equations, we have the values of 𝐿{𝑢1(𝑥)}, 𝐿{𝑢2(𝑥)},… . , 𝐿{𝑢𝑛(𝑥)}. After taking 

the inverse Laplace-Carson transforms on these values, we get the required values of 𝑢1(𝑥), 𝑢2(𝑥),… . , 𝑢𝑛(𝑥). 
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NUMERICAL PROBLEMS: In this part of the paper, some numerical problems have been considered for 

explaining the complete methodology. 

Problem: 1 Consider the following system of convolution type linear Volterra integro-differential equations of 

first kind 

∫ 𝑢1
′(𝑡)𝑑𝑡

𝑥

0
+ ∫ 𝑢2(𝑡)𝑑𝑡

𝑥

0
= 0

−∫ 𝑢1(𝑡)𝑑𝑡
𝑥

0
+ ∫ 𝑢2

′(𝑡)𝑑𝑡
𝑥

0
= 0

}        (7) 

with 𝑢1(0) = 1, 𝑢2(0) = 0          (8) 

Operating Laplace-Carson transform on system (7) and using convolution theorem of Laplace-Carson 

transform, we have 

1

𝑝
𝐿{1}𝐿{𝑢1

′(𝑥)} +
1

𝑝
𝐿{1}𝐿{𝑢2(𝑥)} = 0

−
1

𝑝
𝐿{1}𝐿{𝑢1(𝑥)} +

1

𝑝
𝐿{1}𝐿{𝑢2

′(𝑥)} = 0
}       (9) 

Using the property “Laplace-Carson transforms of derivatives” on system (9), we have 

1

𝑝
[𝑝𝐿{𝑢1(𝑥)} − 𝑝𝑢1(0)] +

1

𝑝
𝐿{𝑢2(𝑥)} = 0

−
1

𝑝
𝐿{𝑢1(𝑥)} +

1

𝑝
[𝑝𝐿{𝑢2(𝑥)} − 𝑝𝑢2(0)] = 0

}      (10) 

Using equation (8) in system (10), we get 

1

𝑝
[𝑝𝐿{𝑢1(𝑥)} − 𝑝] +

1

𝑝
𝐿{𝑢2(𝑥)} = 0

−
1

𝑝
𝐿{𝑢1(𝑥)} +

1

𝑝
[𝑝𝐿{𝑢2(𝑥)} − 𝑝. 0] = 0

}        (11) 

After simplification system (11), we have 

𝐿{𝑢1(𝑥)} +
1

𝑝
𝐿{𝑢2(𝑥)} = 1

−
1

𝑝
𝐿{𝑢1(𝑥)} + 𝐿{𝑢2(𝑥)} = 0

}         (12) 

The solution of system (12) is given by 

𝐿{𝑢1(𝑥)} =
|
1

1

𝑝

0 1
|

|
1

1

𝑝

−
1

𝑝
1
|

=
𝑝2

𝑝2+1

𝐿{𝑢2(𝑥)} =
|
1 1

−
1

𝑝
0|

|
1

1

𝑝

−
1

𝑝
1
|

=
𝑝

𝑝2+1

}
 
 
 
 

 
 
 
 

          (13) 
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Operating inverse Laplace-Carson transforms on system (13), we get the required solution of system (7) with 

(8) as 

𝑢1(𝑥) = 𝐿−1 {
𝑝2

𝑝2+1
} = 𝑐𝑜𝑠𝑥

𝑢2(𝑥) = 𝐿
−1 {

𝑝

𝑝2+1
} = 𝑠𝑖𝑛𝑥

}. 

Problem: 2 Consider the following system of convolution type linear Volterra integro-differential equations of 

first kind 

∫ 𝑢1
′(𝑡)𝑑𝑡

𝑥

0
+ ∫ 𝑢2(𝑡)𝑑𝑡

𝑥

0
=

𝑥2

2

−∫ 𝑢1(𝑡)𝑑𝑡
𝑥

0
+ ∫ 𝑢2

′(𝑡)𝑑𝑡
𝑥

0
= 0

}        (14) 

with 𝑢1(0) = 1, 𝑢2(0) = 0          (15) 

Operating Laplace-Carson transform on system (14) and using convolution theorem of Laplace-Carson 

transform, we have 

1

𝑝
𝐿{1}𝐿{𝑢1

′(𝑥)} +
1

𝑝
𝐿{1}𝐿{𝑢2(𝑥)} =

1

2
𝐿{𝑥2}

−
1

𝑝
𝐿{1}𝐿{𝑢1(𝑥)} +

1

𝑝
𝐿{1}𝐿{𝑢2

′(𝑥)} = 0
}      (16) 

Using the property “Laplace-Carson transforms of derivatives” on system (16), we have 

1

𝑝
[𝑝𝐿{𝑢1(𝑥)} − 𝑝𝑢1(0)] +

1

𝑝
𝐿{𝑢2(𝑥)} =

1

2
(
2

𝑝2
)

−
1

𝑝
𝐿{𝑢1(𝑥)} +

1

𝑝
[𝑝𝐿{𝑢2(𝑥)} − 𝑝𝑢2(0)] = 0

}      (17) 

Using equation (15) in system (17), we get 

1

𝑝
[𝑝𝐿{𝑢1(𝑥)} − 𝑝] +

1

𝑝
𝐿{𝑢2(𝑥)} =

1

𝑝2

−
1

𝑝
𝐿{𝑢1(𝑥)} +

1

𝑝
[𝑝𝐿{𝑢2(𝑥)} − 𝑝. 0] = 0

}        (18) 

After simplification system (18), we have 

𝐿{𝑢1(𝑥)} +
1

𝑝
𝐿{𝑢2(𝑥)} = 1 +

1

𝑝2

−
1

𝑝
𝐿{𝑢1(𝑥)} + 𝐿{𝑢2(𝑥)} = 0

         (19) 
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The solution of system (19) is given by 

𝐿{𝑢1(𝑥)} =
|
(1+

1

𝑝2
)

1

𝑝

0 1
|

|
1

1

𝑝

−
1

𝑝
1
|

= 1

𝐿{𝑢2(𝑥)} =

|
1 (1+

1

𝑝2
)

−
1

𝑝
0

|

|
1

1

𝑝

−
1

𝑝
1
|

=
1

𝑝

}
 
 
 
 

 
 
 
 

         (20) 

Operating inverse Laplace-Carson transforms on system (20), we get the required solution of system (14) with 

(15) as 

𝑢1(𝑥) = 𝐿
−1{1} = 1

𝑢2(𝑥) = 𝐿
−1 {

1

𝑝
} = 𝑥

}. 

Problem: 3 Consider the following system of convolution type linear Volterra integro-differential equations of 

first kind 

∫ 𝑢1
′(𝑡)𝑑𝑡

𝑥

0
+ ∫ 𝑢2(𝑡)𝑑𝑡

𝑥

0
= 2𝑠𝑖𝑛𝑥

∫ 𝑢1(𝑡)𝑑𝑡
𝑥

0
+ ∫ 𝑢2

′(𝑡)𝑑𝑡
𝑥

0
= 0

}        (21) 

with 𝑢1(0) = 0, 𝑢2(0) = 1           (22) 

Operating Laplace-Carson transform on system (21) and using convolution theorem of Laplace-Carson 

transform, we have 

1

𝑝
𝐿{1}𝐿{𝑢1

′(𝑥)} +
1

𝑝
𝐿{1}𝐿{𝑢2(𝑥)} = 2𝐿{𝑠𝑖𝑛𝑥}

1

𝑝
𝐿{1}𝐿{𝑢1(𝑥)} +

1

𝑝
𝐿{1}𝐿{𝑢2

′(𝑥)} = 0
}      (23) 

Using the property “Laplace-Carson transforms of derivatives” on system (23), we have 

1

𝑝
[𝑝𝐿{𝑢1(𝑥)} − 𝑝𝑢1(0)] +

1

𝑝
𝐿{𝑢2(𝑥)} = 2 (

𝑝

𝑝2+1
)

1

𝑝
𝐿{𝑢1(𝑥)} +

1

𝑝
[𝑝𝐿{𝑢2(𝑥)} − 𝑝𝑢2(0)] = 0

}      (24) 

Using equation (22) in system (24), we get 

1

𝑝
[𝑝𝐿{𝑢1(𝑥)} − 𝑝. 0] +

1

𝑝
𝐿{𝑢2(𝑥)} = 2 (

𝑝

𝑝2+1
)

1

𝑝
𝐿{𝑢1(𝑥)} +

1

𝑝
[𝑝𝐿{𝑢2(𝑥)} − 𝑝] = 0

}       (25) 
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After simplification system (25), we have 

𝐿{𝑢1(𝑥)} +
1

𝑝
𝐿{𝑢2(𝑥)} = 2 (

𝑝

𝑝2+1
)

1

𝑝
𝐿{𝑢1(𝑥)} + 𝐿{𝑢2(𝑥)} = 1

}         (26) 

The solution of system (26) is given by 

𝐿{𝑢1(𝑥)} =
|
(
2𝑝

𝑝2+1
)

1

𝑝

1 1
|

|
1

1

𝑝
1

𝑝
1
|

=
𝑝

𝑝2+1

𝐿{𝑢2(𝑥)} =

|
1 (

2𝑝

𝑝2+1
)

1

𝑝
1

|

|
1

1

𝑝
1

𝑝
1
|

=
𝑝2

𝑝2+1

}
 
 
 
 

 
 
 
 

         (27) 

Operating inverse Laplace-Carson transforms on system (27), we get the required solution of system (21) with 

(22) as 

𝑢1(𝑥) = 𝐿
−1 {

𝑝

𝑝2+1
} = 𝑠𝑖𝑛𝑥

𝑢2(𝑥) = 𝐿
−1 {

𝑝2

𝑝2+1
} = 𝑐𝑜𝑠𝑥

}. 

Problem: 4 Consider the following system of convolution type linear Volterra integro-differential equations of 

first kind 

∫ 𝑢1
′(𝑡)𝑑𝑡

𝑥

0
− ∫ 𝑢3(𝑡)𝑑𝑡

𝑥

0
= 0

∫ 𝑢2
′(𝑡)𝑑𝑡

𝑥

0
+ ∫ 𝑢3(𝑡)𝑑𝑡

𝑥

0
= 0

∫ 𝑢1(𝑡)𝑑𝑡
𝑥

0
+ ∫ 𝑢2(𝑡)𝑑𝑡

𝑥

0
+ ∫ 𝑢3

′(𝑡)𝑑𝑡
𝑥

0
= 0}

 

 
       (28) 

with 𝑢1(0) = 0, 𝑢2(0) = 1, 𝑢3(0) = 0        (29) 

Operating Laplace-Carson transform on system (28) and using convolution theorem of Laplace-Carson 

transform, we have 

1

𝑝
𝐿{1}𝐿{𝑢1

′(𝑥)} −
1

𝑝
𝐿{1}𝐿{𝑢3(𝑥)} = 0

1

𝑝
𝐿{1}𝐿{𝑢2

′(𝑥)} +
1

𝑝
𝐿{1}𝐿{𝑢3(𝑥)} = 0

1

𝑝
𝐿{1}𝐿{𝑢1(𝑥)} +

1

𝑝
𝐿{1}𝐿{𝑢2(𝑥)} +

1

𝑝
𝐿{1}𝐿{𝑢3

′(𝑥)} = 0
}
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Using the property “Laplace-Carson transforms of derivatives” on above system, we have 

1

𝑝
[𝑝𝐿{𝑢1(𝑥)} − 𝑝𝑢1(0)] −

1

𝑝
𝐿{𝑢3(𝑥)} = 0

1

𝑝
[𝑝𝐿{𝑢2(𝑥)} − 𝑝𝑢2(0)] +

1

𝑝
𝐿{𝑢3(𝑥)} = 0

1

𝑝
𝐿{𝑢1(𝑥)} +

1

𝑝
𝐿{𝑢2(𝑥)} +

1

𝑝
[𝑝𝐿{𝑢3(𝑥)} − 𝑝𝑢3(0)] = 0}

 
 

 
 

      (30) 

Using equation (29) in system (30), we get 

1

𝑝
[𝑝𝐿{𝑢1(𝑥)} − 𝑝. 0] −

1

𝑝
𝐿{𝑢3(𝑥)} = 0

1

𝑝
[𝑝𝐿{𝑢2(𝑥)} − 𝑝] +

1

𝑝
𝐿{𝑢3(𝑥)} = 0

1

𝑝
𝐿{𝑢1(𝑥)} +

1

𝑝
𝐿{𝑢2(𝑥)} +

1

𝑝
[𝑝𝐿{𝑢3(𝑥)} − 𝑝. 0] = 0}

 
 

 
 

      (31) 

After simplification system (31), we have 

𝐿{𝑢1(𝑥)} −
1

𝑝
𝐿{𝑢3(𝑥)} = 0

𝐿{𝑢2(𝑥)} +
1

𝑝
𝐿{𝑢3(𝑥)} = 1

1

𝑝
𝐿{𝑢1(𝑥)} +

1

𝑝
𝐿{𝑢2(𝑥)} + 𝐿{𝑢3(𝑥)} = 0}

 
 

 
 

        (32) 

The solution of system (32) is given by 

𝐿{𝑢1(𝑥)} =

|
|

0 0 −
1

𝑝

1 1
1

𝑝

0
1

𝑝
1

|
|

|
|

1 0 −
1

𝑝

0 1
1

𝑝
1

𝑝

1

𝑝
1

|
|

= −
1

𝑝2
          (33) 

𝐿{𝑢2(𝑥)} =

|
|

1 0 −
1

𝑝

0 1
1

𝑝
1

𝑝
0 1

|
|

|
|

1 0 −
1

𝑝

0 1
1

𝑝
1

𝑝

1

𝑝
1

|
|

= 1 +
1

𝑝2
         (34) 
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𝐿{𝑢3(𝑥)} =

|

1 0 0
0 1 1
1

𝑝

1

𝑝
0
|

|
|

1 0 −
1

𝑝

0 1
1

𝑝
1

𝑝

1

𝑝
1

|
|

= −
1

𝑝
          (35) 

 

Operating inverse Laplace-Carson transforms on equations (33), (34) and (35), we get the required solution of 

system (28) with (29) as 

𝑢1(𝑥) = −𝐿−1 {
1

𝑝2
} = −

𝑥2

2

𝑢2(𝑥) = 𝐿
−1 {1 +

1

𝑝2
} = 𝐿−1{1} + 𝐿−1 {

1

𝑝2
} = 1 +

𝑥2

2

𝑢3(𝑥) = −𝐿
−1 {

1

𝑝
} = −𝑥 }

 
 

 
 

. 

CONCLUSIONS: In this paper, authors successfully determined the primitive of system of convolution type 

linear Volterra integro-differential equations of first kind by using Laplace-Carson transform and complete 

methodology is explained by considering four numerical problems. The results of numerical problems show 

that the Laplace-Carson transform is very effective and useful integral transform for determining the primitive 

of system of convolution type linear Volterra integro-differential equations of first kind.  
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